Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
Hum Genomics ; 17(1): 102, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37968704

RESUMEN

BACKGROUND: Next-generation sequencing has had a significant impact on genetic disease diagnosis, but the interpretation of the vast amount of genomic data it generates can be challenging. To address this, the American College of Medical Genetics and Genomics and the Association for Molecular Pathology have established guidelines for standardized variant interpretation. In this manuscript, we present the updated Hospital Israelita Albert Einstein Standards for Constitutional Sequence Variants Classification, incorporating modifications from leading genetics societies and the ClinGen initiative. RESULTS: First, we standardized the scientific publications, documents, and other reliable sources for this document to ensure an evidence-based approach. Next, we defined the databases that would provide variant information for the classification process, established the terminology for molecular findings, set standards for disease-gene associations, and determined the nomenclature for classification criteria. Subsequently, we defined the general rules for variant classification and the Bayesian statistical reasoning principles to enhance this process. We also defined bioinformatics standards for automated classification. Our workgroup adhered to gene-specific rules and workflows curated by the ClinGen Variant Curation Expert Panels whenever available. Additionally, a distinct set of specifications for criteria modulation was created for cancer genes, recognizing their unique characteristics. CONCLUSIONS: The development of an internal consensus and standards for constitutional sequence variant classification, specifically adapted to the Brazilian population, further contributes to the continuous refinement of variant classification practices. The aim of these efforts from the workgroup is to enhance the reliability and uniformity of variant classification.


Asunto(s)
Pruebas Genéticas , Variación Genética , Humanos , Estados Unidos , Mutación , Reproducibilidad de los Resultados , Teorema de Bayes , Genoma Humano
2.
Microbiome ; 11(1): 125, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264385

RESUMEN

BACKGROUND: Several investigations on the microbial diversity and functional properties of the International Space Station (ISS) environment were carried out to understand the influence of spaceflight conditions on the microbial population. However, metagenome-assembled genomes (MAGs) of ISS samples are yet to be generated and subjected to various genomic analyses, including phylogenetic affiliation, predicted functional pathways, antimicrobial resistance, and virulence characteristics. RESULTS: In total, 46 MAGs were assembled from 21 ISS environmental metagenomes, in which metaSPAdes yielded 20 MAGs and metaWRAP generated 26 MAGs. Among 46 MAGs retrieved, 18 bacterial species were identified, including one novel genus/species combination (Kalamiella piersonii) and one novel bacterial species (Methylobacterium ajmalii). In addition, four bins exhibited fungal genomes; this is the first-time fungal genomes were assembled from ISS metagenomes. Phylogenetic analyses of five bacterial species showed ISS-specific evolution. The genes pertaining to cell membranes, such as transmembrane transport, cell wall organization, and regulation of cell shape, were enriched. Variations in the antimicrobial-resistant (AMR) and virulence genes of the selected 20 MAGs were characterized to predict the ecology and evolution of biosafety level (BSL) 2 microorganisms in space. Since microbial virulence increases in microgravity, AMR gene sequences of MAGs were compared with genomes of respective ISS isolates and corresponding type strains. Among these 20 MAGs characterized, AMR genes were more prevalent in the Enterobacter bugandensis MAG, which has been predominantly isolated from clinical samples. MAGs were further used to analyze if genes involved in AMR and biofilm formation of viable microbes in ISS have variation due to generational evolution in microgravity and radiation pressure. CONCLUSIONS: Comparative analyses of MAGs and whole-genome sequences of related ISS isolates and their type strains were characterized to understand the variation related to the microbial evolution under microgravity. The Pantoea/Kalamiella strains have the maximum single-nucleotide polymorphisms found within the ISS strains examined. This may suggest that Pantoea/Kalamiella strains are much more subjective to microgravity changes. The reconstructed genomes will enable researchers to study the evolution of genomes under microgravity and low-dose irradiation compared to the evolution of microbes here on Earth. Video Abstract.


Asunto(s)
Antiinfecciosos , Gammaproteobacteria , Vuelo Espacial , Metagenoma , Filogenia , Bacterias , Gammaproteobacteria/genética , Metagenómica
3.
Front Genet ; 13: 921324, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147510

RESUMEN

Hearing loss (HL) is a common sensory deficit in humans and represents an important clinical and social burden. We studied whole-genome sequencing data of a cohort of 2,097 individuals from the Brazilian Rare Genomes Project who were unaffected by hearing loss to investigate pathogenic and likely pathogenic variants associated with nonsyndromic hearing loss (NSHL). We found relevant frequencies of individuals harboring these alterations: 222 heterozygotes (10.59%) for sequence variants, 54 heterozygotes (2.58%) for copy-number variants (CNV), and four homozygotes (0.19%) for sequence variants. The top five most frequent genes and their corresponding combined allelic frequencies (AF) were GJB2 (AF = 1.57%), STRC (AF = 1%), OTOA (AF = 0.69%), TMPRSS3 (AF = 0.41%), and OTOF (AF = 0.29%). The most frequent sequence variant was GJB2:c.35del (AF = 0.72%), followed by OTOA:p. (Glu787Ter) (AF = 0.61%), while the most recurrent CNV was a microdeletion of 57.9 kb involving the STRC gene (AF = 0.91%). An important fraction of these individuals (n = 104; 4.96%) presented variants associated with autosomal dominant forms of NSHL, which may imply the development of some hearing impairment in the future. Using data from the heterozygous individuals for recessive forms and the Hardy-Weinberg equation, we estimated the population frequency of affected individuals with autosomal recessive NSHL to be 1:2,222. Considering that the overall prevalence of HL in adults ranges from 4-15% worldwide, our data indicate that an important fraction of this condition may be associated with a monogenic origin and dominant inheritance.

4.
Front Mol Biosci ; 9: 821582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586190

RESUMEN

Rare diseases affect up to 13.2 million individuals in Brazil. The Brazilian Rare Genomes Project is envisioned to further the implementation of genomic medicine into the Brazilian public healthcare system. Here we report the validation results of a whole genome sequencing (WGS) procedure for implementation in clinical laboratories. In addition, we report data quality for the first 1,200 real-world patients sequenced. We sequenced a well-characterized group of 76 samples, including seven gold standard genomes, using a PCR-free WGS protocol on Illumina Novaseq 6,000 equipment. We compared the observed variant calls with their expected calls, observing good concordance for single nucleotide variants (SNVs; mean F-measure = 99.82%) and indels (mean F-measure = 99.57%). Copy number variants and structural variants events detection performances were as expected (F-measures 96.6% and 90.3%, respectively). Our WGS protocol presented excellent intra-assay reproducibility (coefficients of variation ranging between 0.03% and 0.20%) and inter-assay reproducibility (coefficients of variation ranging between 0.02% and 0.09%). Limitations of the WGS protocol include the inability to confidently detect variants such as uniparental disomy, balanced translocations, repeat expansion variants, and low-level mosaicism. In summary, the observed performance of the WGS protocol was in accordance with that seen in the best centers worldwide. The Rare Genomes Project is an important initiative to bring pivotal improvements to the quality of life of the affected individuals.

5.
BMC Genomics ; 22(1): 652, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34507539

RESUMEN

BACKGROUND: Composting is an important technique for environment-friendly degradation of organic material, and is a microbe-driven process. Previous metagenomic studies of composting have presented a general description of the taxonomic and functional diversity of its microbial populations, but they have lacked more specific information on the key organisms that are active during the process. RESULTS: Here we present and analyze 60 mostly high-quality metagenome-assembled genomes (MAGs) recovered from time-series samples of two thermophilic composting cells, of which 47 are potentially new bacterial species; 24 of those did not have any hits in two public MAG datasets at the 95% average nucleotide identity level. Analyses of gene content and expressed functions based on metatranscriptome data for one of the cells grouped the MAGs in three clusters along the 99-day composting process. By applying metabolic modeling methods, we were able to predict metabolic dependencies between MAGs. These models indicate the importance of coadjuvant bacteria that do not carry out lignocellulose degradation but may contribute to the management of reactive oxygen species and with enzymes that increase bioenergetic efficiency in composting, such as hydrogenases and N2O reductase. Strong metabolic dependencies predicted between MAGs revealed key interactions relying on exchange of H+, NH3, O2 and CO2, as well as glucose, glutamate, succinate, fumarate and others, highlighting the importance of functional stratification and syntrophic interactions during biomass conversion. Our model includes 22 out of 49 MAGs recovered from one composting cell data. Based on this model we highlight that Rhodothermus marinus, Thermobispora bispora and a novel Gammaproteobacterium are dominant players in chemolithotrophic metabolism and cross-feeding interactions. CONCLUSIONS: The results obtained expand our knowledge of the taxonomic and functional diversity of composting bacteria and provide a model of their dynamic metabolic interactions.


Asunto(s)
Compostaje , Metagenoma , Actinobacteria , Bacterias/genética , Rhodothermus
6.
BMC Genomics, v. 22, 652, set. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3946

RESUMEN

Background Composting is an important technique for environment-friendly degradation of organic material, and is a microbe-driven process. Previous metagenomic studies of composting have presented a general description of the taxonomic and functional diversity of its microbial populations, but they have lacked more specific information on the key organisms that are active during the process. Results Here we present and analyze 60 mostly high-quality metagenome-assembled genomes (MAGs) recovered from time-series samples of two thermophilic composting cells, of which 47 are potentially new bacterial species; 24 of those did not have any hits in two public MAG datasets at the 95% average nucleotide identity level. Analyses of gene content and expressed functions based on metatranscriptome data for one of the cells grouped the MAGs in three clusters along the 99-day composting process. By applying metabolic modeling methods, we were able to predict metabolic dependencies between MAGs. These models indicate the importance of coadjuvant bacteria that do not carry out lignocellulose degradation but may contribute to the management of reactive oxygen species and with enzymes that increase bioenergetic efficiency in composting, such as hydrogenases and N2O reductase. Strong metabolic dependencies predicted between MAGs revealed key interactions relying on exchange of H+, NH3, O2 and CO2, as well as glucose, glutamate, succinate, fumarate and others, highlighting the importance of functional stratification and syntrophic interactions during biomass conversion. Our model includes 22 out of 49 MAGs recovered from one composting cell data. Based on this model we highlight that Rhodothermus marinus, Thermobispora bispora and a novel Gammaproteobacterium are dominant players in chemolithotrophic metabolism and cross-feeding interactions. Conclusions The results obtained expand our knowledge of the taxonomic and functional diversity of composting bacteria and provide a model of their dynamic metabolic interactions.

7.
Sci Rep ; 6: 38915, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27941956

RESUMEN

Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.


Asunto(s)
Compostaje , Consorcios Microbianos , Microbiología del Suelo , Bacterias/genética , Biodegradación Ambiental , Biomasa , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Lignina/metabolismo , Metagenómica , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...